Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Research Publications


Publications for Gyula Toth

From (year): To (year):

Download all publications as Word document


Journal Articles

Toth, G (2024) Hydrodynamic density functional theory of simple dissipative fluids, New Journal of Physics, 26, DOI: 10.1088/1367-2630/ad42c9.

Abdalla, S, Archer, A, Granasy, L, Toth, G (2022) Thermodynamics, formation dynamics, and structural correlations in the bulk amorphous phase of the phase-field crystal model, The Journal of Chemical Physics, 157(16), 164502, ISSN: 0021-9606. DOI: 10.1063/5.0114705.

Toth, G (2022) Emergent pseudo time-irreversibility in the classical many-body system of pair interacting particles, Physica D: Nonlinear Phenomena, 437, 133336, ISSN: 0167-2789. DOI: 10.1016/j.physd.2022.133336.

Vrugt, MT, Toth, G, Wittkowski, R (2021) Master equations for Wigner functions with spontaneous collapse and their relation to thermodynamic irreversibility, Journal of Computational Electronics, 20(6), pp.2209-2231, ISSN: 1569-8025. DOI: 10.1007/s10825-021-01804-6.

Granasy, L, Ratkai, L, Toth, G, Gilbert, P, Zlotnikov, I, Pusztai, T (2021) Phase-field modeling of biomineralization in mollusks and corals: Microstructure vs formation mechanism, Journal of the American Chemical Society, 1(7), pp.1014-1033, ISSN: 0002-7863. DOI: 10.1021/jacsau.1c00026.

He, B, Martin-Fabiani, I, Roth, R, Toth, G, Archer, A (2021) Dynamical density functional theory for the drying and stratification of binary colloidal dispersions, Langmuir, 37(4), pp.1399-1409, ISSN: 0743-7463. DOI: 10.1021/acs.langmuir.0c02825.

Gránásy, L, Tóth, GI, Warren, JA, Podmaniczky, F, Tegze, G, Rátkai, L, Pusztai, T (2019) Phase-field modeling of crystal nucleation in undercooled liquids – A review, Progress in Materials Science, pp.100569-100569, ISSN: 0079-6425. DOI: 10.1016/j.pmatsci.2019.05.002.

Podmaniczky, F, Toth, G, Tegze, G, Granasy, L (2017) Hydrodynamic theory of freezing: nucleation and polycrystalline growth, Physical Review E, 95(5), ISSN: 2470-0045. DOI: 10.1103/PhysRevE.95.052801.

Rátkai, L, Tóth, GI, Környei, L, Pusztai, T, Gránásy, L (2017) Phase-field modeling of eutectic structures on the nanoscale: the effect of anisotropy, Journal of Materials Science, 52(10), pp.5544-5558, ISSN: 0022-2461. DOI: 10.1007/s10853-017-0853-8.

Toth, G, Selvag, J, Kvamme, B (2017) Phenomenological continuum theory of asphaltene-stabilized oil/water emulsions, Energy & Fuels, 31(2), pp.1218-1225, ISSN: 0887-0624. DOI: 10.1021/acs.energyfuels.6b02430.

Korbuly, B, Pusztai, T, Toth, G, Henry, H, Plapp, M, Granasy, L (2017) Orientation-field models for polycrystalline solidification: grain coarsening and complex growth forms, Journal of Crystal Growth, 457, pp.32-37, ISSN: 0022-0248. DOI: 10.1016/j.jcrysgro.2016.06.040.

Podmaniczky, F, Toth, G, Tegze, G, Pusztai, T, Granasy, L (2017) Phase-field crystal modeling of heteroepitaxy and exotic modes of crystal nucleation, Journal of Crystal Growth, 457, pp.24-31, ISSN: 0022-0248. DOI: 10.1016/j.jcrysgro.2016.06.056.

Toth, G (2016) Phase-field modeling of isothermal quasi-incompressible multicomponent liquids, Physical Review E, 94(3), ISSN: 2470-0045. DOI: 10.1103/PhysRevE.94.033114.

Toth, G, Zarifi, M, Kvamme, B (2016) Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids, Physical Review E, 93(1), ISSN: 2470-0045. DOI: 10.1103/PhysRevE.93.013126.

Podmaniczky, F, Toth, G, Pusztai, T, Granasy, L (2016) Investigating nucleation using the phase-field method, Journal of the Indian Institute of Science, 96(3), pp.161-178, ISSN: 0019-4964.

Toth, G, Pusztai, T, Granasy, L (2015) Consistent multiphase-field theory for interface-driven multidomain dynamics, Physical Review B, 92, 184105, ISSN: 1098-0121. DOI: 10.1103/PhysRevB.92.184105.

Podmaniczky, F, Toth, G, Tegze, G, Granasy, L (2015) Recent developments in modeling heteroepitaxy/heterogeneous nucleation by dynamical density functional theory, Metallurgical and Materials Transactions A, 46(11), pp.4908-4920, ISSN: 1073-5623. DOI: 10.1007/s11661-015-2986-1.

Toth, G and Kvamme, B (2015) Analysis of Ginzburg-Landau-type models of surfactant-assisted liquid phase separation, Physical Review E, 91(3), ISSN: 1539-3755. DOI: 10.1103/PhysRevE.91.032404.

Toth, G and Kvamme, B (2015) Phase field modelling of spinodal decomposition in the oil/water/asphaltene system, Phys. Chem. Chem. Phys, 17(31), pp.20259-20273, ISSN: 1463-9076. DOI: 10.1039/C5CP02357B.

Tóth, GI and Provatas, N (2014) Erratum: Advanced Ginzburg-Landau theory of freezing: A density-functional approach [Phys. Rev. B90, 104101 (2014)], Physical Review B, 90(17), 179901, ISSN: 1098-0121. DOI: 10.1103/physrevb.90.179901.

Granasy, L, Ratkai, L, Szallas, A, Korbuly, B, Toth, G, Kornyei, L, Pusztai, T (2014) Phase-field modeling of polycrystalline solidification, from needle crystals to spherulites: a review, Metallurgical and Materials Transactions A, 45(4), pp.1694-1719, ISSN: 1073-5623. DOI: 10.1007/s11661-013-1988-0.

Granasy, L, Podmaniczky, F, Toth, G, Tegze, G, Pusztai, T (2014) Heterogeneous nucleation of/on nanoparticles: a density functional study using the phase-field crystal model, Chemical Society Reviews, 43(7), pp.2159-2159, ISSN: 0306-0012. DOI: 10.1039/c3cs60225g.

Podmaniczky, F, Toth, G, Pusztai, T, Granasy, L (2014) Free energy of the bcc–liquid interface and the Wulff shape as predicted by the phase-field crystal model, Journal of Crystal Growth, 385, pp.148-153, ISSN: 0022-0248. DOI: 10.1016/j.jcrysgro.2013.01.036.

Toth, G and Provatas, N (2014) Advanced Ginzburg–Landau theory of freezing: a density-functional approach, Physical Review B, 90(10), ISSN: 1098-0121. DOI: 10.1103/PhysRevB.90.104101.

Toth, G, Granasy, L, Tegze, G (2014) Nonlinear hydrodynamic theory of crystallization, Journal of Physics: Condensed Matter, 26(5), pp.055001-055001, ISSN: 0953-8984. DOI: 10.1088/0953-8984/26/5/055001.

Granasy, L and Toth, G (2013) Crystallization: colloidal suspense, Nature Physics, 10(1), pp.12-13, ISSN: 1745-2473. DOI: 10.1038/nphys2849.

Tegze, G and Tóth, GI (2012) Osmotic convection-driven instability and cellular eutectic growth in binary systems, Acta Materialia, 60(4), pp.1689-1694, ISSN: 1359-6454. DOI: 10.1016/j.actamat.2011.12.010.

Tóth, GI, Tegze, G, Pusztai, T, Gránásy, L (2012) Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch, Physical Review Letters, 108(2), 025502, ISSN: 0031-9007. DOI: 10.1103/physrevlett.108.025502.

Emmerich, H, Lowen, H, Wittkowski, R, Gruhn, T, Toth, G, Tegze, G, Granasy, L (2012) Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview, Advances in Physics, 61(6), pp.665-743, ISSN: 0001-8732. DOI: 10.1080/00018732.2012.737555.

Tóth, GI, Pusztai, T, Tegze, G, Tóth, G, Gránásy, L (2011) Amorphous Nucleation Precursor in Highly Nonequilibrium Fluids, Physical Review Letters, 107(17), 175702, ISSN: 0031-9007. DOI: 10.1103/physrevlett.107.175702.

Tegze, G, Tóth, GI, Gránásy, L (2011) Faceting and Branching in 2D Crystal Growth, Physical Review Letters, 106(19), 195502, ISSN: 0031-9007. DOI: 10.1103/physrevlett.106.195502.

Tóth, GI, Morris, JR, Gránásy, L (2011) Ginzburg-Landau-Type Multiphase Field Model for Competing fcc and bcc Nucleation, Physical Review Letters, 106(4), 045701, ISSN: 0031-9007. DOI: 10.1103/physrevlett.106.045701.

Gránásy, L, Tegze, G, Tóth, GI, Pusztai, T (2011) Phase-field crystal modelling of crystal nucleation, heteroepitaxy and patterning, Philosophical Magazine, 91(1), pp.123-149, ISSN: 1478-6435. DOI: 10.1080/14786435.2010.487476.

Tegze, G, Gránásy, L, Tóth, GI, Douglas, JF, Pusztai, T (2011) Tuning the structure of non-equilibrium soft materials by varying the thermodynamic driving force for crystal ordering, Soft Matter, 7(5), pp.1789-1799, ISSN: 1744-683X. DOI: 10.1039/c0sm00944j.

Tóth, GI, Tegze, G, Pusztai, T, Tóth, G, Gránásy, L (2010) Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D, Journal of Physics: Condensed Matter, 22(36), pp.364101-364101, ISSN: 0953-8984. DOI: 10.1088/0953-8984/22/36/364101.

Tegze, G, Gránásy, L, Tóth, GI, Podmaniczky, F, Jaatinen, A, Ala-Nissila, T, Pusztai, T (2009) Diffusion-Controlled Anisotropic Growth of Stable and Metastable Crystal Polymorphs in the Phase-Field Crystal Model, Physical Review Letters, 103(3), 035702, ISSN: 0031-9007. DOI: 10.1103/physrevlett.103.035702.

Tóth, GI and Gránásy, L (2009) Crystal Nucleation in the Hard-Sphere System Revisited: A Critical Test of Theoretical Approaches, The Journal of Physical Chemistry B, 113(15), pp.5141-5148, ISSN: 1520-6106. DOI: 10.1021/jp8097439.

Tegze, G, Bansel, G, Tóth, GI, Pusztai, T, Fan, Z, Gránásy, L (2009) Advanced operator splitting-based semi-implicit spectral method to solve the binary phase-field crystal equations with variable coefficients, Journal of Computational Physics, 228(5), pp.1612-1623, ISSN: 0021-9991. DOI: 10.1016/j.jcp.2008.11.011.

Pusztai, T, Tegze, G, Tóth, GI, Környei, L, Bansel, G, Fan, Z, Gránásy, L (2008) Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation, Journal of Physics: Condensed Matter, 20(40), pp.404205-404205, ISSN: 0953-8984. DOI: 10.1088/0953-8984/20/40/404205.

Löser, W, Hermann, R, Woodcock, TG, Fransaer, J, Krivilyov, M, Gránásy, L, Toth, GI, Herlach, DM, Holland-Moritz, D, Kolbe, M, Volkmann, T (2008) Nucleation and phase selection in undercooled melts: Magnetic alloys of industrial relevance (MAGNEPHAS), Journal of the Japan Society of Microgravity Application, 25(3), pp.495-500.

Tóth, GI and Gránásy, L (2007) Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: II. Nucleation in the metastable liquid immiscibility region, The Journal of Chemical Physics, 127(7), ISSN: 0021-9606. DOI: 10.1063/1.2752506.

Tóth, GI and Gránásy, L (2007) Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region, The Journal of Chemical Physics, 127(7), ISSN: 0021-9606. DOI: 10.1063/1.2752505.

Gránásy, L, Pusztai, T, Börzsönyi, T, Tóth, GI, Tegze, G, Warren, JA, Douglas, JF (2006) Polycrystalline patterns in far-from-equilibrium freezing: a phase field study, Philosophical Magazine, 86(24), pp.3757-3778, ISSN: 1478-6435. DOI: 10.1080/14786430500198569.

Tegze, G, Pusztai, T, Tóth, G, Gránásy, L, Svandal, A, Buanes, T, Kuznetsova, T, Kvamme, B (2006) Multiscale approach to CO2 hydrate formation in aqueous solution: Phase field theory and molecular dynamics. Nucleation and growth, The Journal of Chemical Physics, 124(23), ISSN: 0021-9606. DOI: 10.1063/1.2207138.

Gránásy, L, Pusztai, T, Börzsönyi, T, Tóth, G, Tegze, G, Warren, JA, Douglas, JF (2006) Phase field theory of crystal nucleation and polycrystalline growth: A review, Journal of Materials Research, 21(2), pp.309-319, ISSN: 0884-2914. DOI: 10.1557/jmr.2006.0011.

Kvamme, B, Graue, A, Aspenes, E, Kuznetsova, T, Gránásy, L, Tóth, G, Pusztai, T, Tegze, G (2004) Kinetics of solid hydrate formation by carbon dioxide: Phase field theory of hydrate nucleation and magnetic resonance imaging, Phys. Chem. Chem. Phys, 6(9), pp.2327-2334, ISSN: 1463-9076. DOI: 10.1039/b311202k.

Gránásy, L, Pusztai, T, Tóth, G, Jurek, Z, Conti, M, Kvamme, B (2003) Phase field theory of crystal nucleation in hard sphere liquid, The Journal of Chemical Physics, 119(19), pp.10376-10382, ISSN: 0021-9606. DOI: 10.1063/1.1618213.

Toth, GI and Ma, W (Accepted for publication) Phase-field modelling of the effect of density change on solidification revisited: Model development and analytical solutions for single component materials, DOI: 10.1088/1361-648X/ab670e.

Toth, GI (Accepted for publication) Exact hydrodynamic equations to the classical many-body problem in the macroscopic limit.



Conferences

Granasy, L, Tegze, G, Pusztai, T, Toth, GI, Kornyei, L (2008) Phase field modeling of self-organized polycrystalline structures: Denrites, spherulites, eutectics. In , ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, pp.C71-C71, DOI: 10.1107/S0108767308097730.

Gránásy, L, Pusztai, T, Tegze, G, Tóth, G, Warren, JA, Douglas, JF (2006) From needle crystals to polycrystalline spherulites: A phase field study. In , Modeling of Casting, Welding and Advanced Solidification Processes - XI, pp.15-24.

Gránásy, L, Pusztai, T, Börzsönyi, T, Tóth, G, Tegze, G, Warren, JA, Douglas, JF (2004) Nucleation and polycrystalline growth in phase field theory. In , Materials Research Society Symposium Proceedings, pp.76-87.



Chapters

Tóth, GI, Pusztai, T, Tegze, G, Gránásy, L (2012) Phase-Field Crystal Modeling of Homogeneous and Heterogeneous Crystal Nucleation. In Solidification of Containerless Undercooled Melts, pp.112-138, DOI: 10.1002/9783527647903.ch6.

Tóth, GI, Pusztai, T, Tegze, G, Gránásy, L (2012) Phase‐Field Crystal Modeling of Homogeneous and Heterogeneous Crystal Nucleation. In Unknown Parent Title, Wiley, pp.113-138, ISBN: 9783527331222. DOI: 10.1002/9783527647903.ch6.



Software

Toth, G (Accepted for publication) Phase-Field Crystal GPU code.



Other

Toth, GI (Accepted for publication) A measure theoretical approach to non-uniform phases of matter with no long-range spatial order, In this paper, the development of a mathematical method is presented to explore spatially non-uniform phases with no long-range order in mathematical models of first order phase transitions. We use essential results regarding the concentration of measure phenomenon to re-formulate partial differential equations for probability measures, which extends the concept of analytical solutions to random fields. A stochastic solution of an equation is such a non-singular probability measure, according to which the random variable is almost surely a solution to the equation. The general concept is applied for continuum theories, where the concept of symmetry breaking is extended to probability measures. The concept is practicable and predictive for non-local continuum mean-field theories of first order phase transitions. The results suggest that symmetry breaking must be present in stochastic stationary points of the energy on the level of the probability measure. This is in agreement with the observation that amorphous solid structures preserve local ordering..



Getting in touch

Research Office
Loughborough University
Loughborough
Leicestershire
LE11 3TU
researchpolicy@lboro.ac.uk
+44 (0)1509 222453